
Theor. Appl. Genet. 59, 327-332 (1981) 

�9 by Springer-Verlag 1981 

A Note on the Island Model with Sex Dependent Migration 

T. Prout 
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Summary. A theoretical calculation is presented which ex- 
tends Wright's island model of  drift and migration to dif- 
ferential migration between the two sexes. In this circum- 
stance, local demes no longer have Hardy-Weinberg fre- 
quencies. There may be local heterozygote excess or 
deficiency depending, respectively, on whether migration 
occurs before or after mating. The magnitude of the local 
departure from Hardy-Weinberg is directly proportional to 
the difference between the migration parameters of the 
two sexes. These results could have important implica- 
tions for studies where genetic markers are used for infer- 
ring population structure. An example from a study of 
Marmot colonies is cited. 
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1 Introduction 

Swartz and Armitage (1980) report data from marmot 
colonies where there is a considerable difference between 
the two sexes migrating into the colonies. These authors 
also report fixation indices, F, resulting from allozyme 
studies. Negative values were obtained which indicated 
heterozygote excess. There is a possibility of a direct con- 
nection between the heterozygote excess and the sex 
dependent migration. This is because the latter could 
bring about local differences in gene frequency between 
the two sexes, which, in turn, upon random mating would 
produce the well known result of  heterozygote excess as 
compared to Hardy-Weinberg expectation. 

Because the dispersal behavior of  males and females 
must be different in many organisms, the possibility of 
the creation of heterozygote excess for this reason alone 
seems worthy of theoretical study. In this note I present 

the theoretical results of one way to model such a system, 
which is simply the extending of Wright's classic island 
model to migration to two variations in which the migra- 
tion parameters are sex dependent. 

The results of the calculations to be presented are 
analogous to the heterozygote excess due to sex differ- 
ences in Finite populations as reviewed and developed by 
A.D.H. Brown (1979, pp. 16-17). In this latter case, how- 
ever, the allele frequency differences between the sexes 
arise from the stochastic effects of  l~mite population size; 
whereas, in the case which I shall consider, the effect is 
due to differential migration between the sexes. 

I wish to state at the outset, that the theory to be 
developed is an idealized representation of nature, so that 
the results will not be directly applicable to experimental 
data. As with many such models the object is simply to 
alert the experimentalist to some new kinds of  genotypic 
patterns which he might expect to encounter in the field. 

The classic island model, when applied to migration, 
assumes a collection of demes of size N each which re- 
ceives immigrants from a pool to which all demes con- 
tribute. The i th deme has allele frequency Pi and receives 
immigrants carrying allele frequency ~ which is E(Pi) over 
all demes. 

I shall start by first recapitulating Wright's construc- 
tion of the island model. This will provide a basis for 
comparing both the analytical procedures, and also the 
results obtained when this model is extended in two dif- 
ferent ways. 

2 Review of Wright's Island Model with Migration 

Following Wright (1969, Chap. 12), the demes are com- 
posed of immature individuals with variance of allele fre- 
quency among demes of ot 2. Unmated individuals enter 
deme i such that (l-M) of the deme are natives and M are 
immigrants. There is then random mating within the 
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deme. After immigration, the allele frequency Pi in the i TM 

deme among mated individuals is 

"Pi : (1 - M) Pi + Mp (1) 

The variance among demes has been reduced to  O2m 

E(a2wi) = E('pi'qi/2N), 

and E(o'2wi) = ~ ~ -- O~}. (6) 

The variance among demes, o~,  is given by (2). Substitut- 
ing (6) and (2) into (5) yields a2+ 1 . 

O2m = (1 - M): o 2 (2) 

Also, the progeny from random mating in the i TM deme 
are 

1 
~ = 2--N {p~ - ~  (1 - M): } + oi  (I - M) 2 , 

or a2+1 - 2NPq + ~  (1 - M) 2 (I - 2__~).1 

(7) 

f(Al Al ) - P i  : P~i 2 = P~ - 2M (p~ - PiP) + (3A) 

M2 (Pi -- ~)2, 

f(Al A2 ) = Hi = 2piqi = 2piqi - 

2M (2piqi - Piq - qiP)+2M2(qi - q )  (Pi - P),  (3B) 

and f(A1A2) = Qi ='~'2 = q~ _ 2M (q~ - qiq) + 

+ M: (qi - ~)z.  (3C) 

The global genotype frequencies over all demes can be 
obtained from taking expectations of  each genotype over 
demes, which are 

E(P"i) - P = ~2 + 02 (1 - M) 2 , 

E(fii) - H : 2 ~  - 2o2 (1 - M) 2 , 

a n d E ( Q ) = 0 = ~ 2 + 0 1 ( 1 - M )  2. 

(4A) 

(4B) 

(4c) 

The deme genotypes (3) and global genotypes (4), 
thus, would represent large numbers of  young individuals 
resulting from the deterministic effect of  migration, and 
prior to the stochastic effects due to random drift which 
occur before the next generation is produced. The geno- 
type frequencies of  this specific stage of  the life cycle will 
be the object of  study in the models to be presented later. 

Nevertheless, we now proceed to complete the life 
cycle in order to show how a steady state of  demic diversi- 
ty, or equilibrium variance, is obtained. 

New variance is generated because a finite number of  
individuals, N, in each deme are chosen to found the next 
generation. Following Wright (1969, p. 292), this new 
variance over demes can be obtained by a calculation 
analogous to a one way ANOVA where demes represent 
' t reatments. '  1, 2, 3 ... k demes. Thus, 

O2+1 =E(a~wi) + a~ .  
where E(a2w i) = expected variance within demes 

o5 = variance among demes 
(5) 

At equilibrium O2+1 = O 2 ~. ~2. Solving for b 2 yields: 

5: = Pq (8A) 
2N ( 2 M -  U =) + ( I  - M) 2 

for small M this reduces to 

52 - Pq (8B) 
4NM + 1 

These well known results are recapitulated here because 
analogous methodology will be used in developing the sex 
dependent migration models to follow, and also, as al- 
ready stated, comparisons of  the results of  these models 
will be made with the deterministic stage represented by 
genotypic frequencies (3) and (4). 

It is important  to note that this model assumes that 
the immigrants and natives do not mate until after the 
immigration process, resulting in the offspring in each 
deme being Hardy-Weinberg frequencies for alleles Pi, qi- 

In what follows, two models will be developed where 
the amount of  migration is sex dependent. One will entail 
immigration of unmated females and will be termed the 
'Marmot model ' ,  because according to Swartz and Ar- 
mitage the immigrant females are virgin. The other model 
will be termed the 'Pollen-Seed model. '  In the latter 
model seeds carry fertilized zygotes, which is equivalent 
to migration of  fertilized females. The pollen produced by 
plants is equivalent to sperm carrying males in animals. 

A good example of the 'Pollen-Seed' model in animals is the wasp 
Polistes apaches. According to Professor R.M. Metcalf, Depart- 
ment of Zoology at the University of California, Davis, many 
female wasps return to build nests in the same locality in which 
they were born, but in the meantime they have mated with males 
drawn from a much larger area. (Because the males are haploid 
they are precise analogoues of pollen grains.) In this case a deme 
might represent the eaves of several houses on a street in the 
sprawling suburbia surrounding the city of Davis, California. 

3 The Marmot Model 

The variance of  genefrequencies in a sample of  N individ- 
uals from deme i is piqi/2N. So, 

Let m and n denote the male and female migration para- 
meters, respectively. After migration into deme i the male 
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and female allele frequencies Pid and Pi9 will be as fol- 
lows: 

homozygotes from Hardy-Weinberg frequencies, di in the 
following way: 

Pig = (1 -- m)p i + mp, 

and P~i~ = (1 - n)p i +np .  

(9) 

(10) 

The genotypic frequencies resulting from random union 
of these gametes in deme i are, 

~ 1 
AiA,  P i=p~ - ~ ( m - n )  2 (p - pi) 2, ( l l A )  

AtA2 f i i  = 2piqi +-~(m - n) 2 (p - pi) 2 , (11 B) 

A~A2 Qi 72 1 = qi - ~ ( m  - n) 2 (p - pi) 2, ( l l C )  

Pt9 + Pid 
w h e r e  Pi - - -  or from (9) ,  (10) ,  

2 

(m + n) 
Pi = p i +  ~ ( P - P i ) .  (12) 

The global genotype frequencies are 

p = E(~i ) = ~2 + o~ (1 - m) (1 - n), (13A) 

= E(Hi) = 2pq  - 202 (1 - m) (1 - n), (13B) 

andP  = E(P"~i) =~2 + e~ (1 - m) (1 - n). (13C) 

Equations (11) and (13) carry the important informa- 
tion, but before further examination, we first complete 
the cycle by calculating o~+ 1 . 

The one way ANOVA procedure will be employed. 
Equation (11) can be used to calculate the expected with- 
in-deme var iance  E(o2wi). However, the p r o c ~ u ~  has the 
complication that the genotypic frequencies, Pi, Hi, Q'i are 
not in Hardy-Weinberg frequencies; that is, the pairing of 
alleles A1 ,A2  in zygotes is not independent. The allele 
f~quency Pi is, by definition, the following function of 
(Pi, Hi) 

Sampling N iodividuals from a trinomial distribution with 
probabilities Pi, Hi, Q, the 'within deme' variance works 
out to be, 

2 
O'wi = 

"Pi (1 -"Pi) + l  . . . .  Hi (1 - Hi) - PiHi 

N 

This variance can be expressed in a more convenient way 
by changing the variables, (Pi,  Hi,  Qi)  to  t w o  independent 
variables, the allele frequency Pi and the deviation of the 

" P i  = p~i 2 + d  i 

Hi = 2piqi - 2di 

Q i = q l  2 +d  i 

After this transformation, it can be shown that 

Piqi + di 
2 (14) Owl - 2N 

This result is quite general for non-Hardy-Weinberg geno- 
typic frequencies. Another useful form of  it can be ob- 
tained by substituting d i = Fipqi 

2 
O w  i - 

Piqi (1 + Fi) (15) 

2N 

For the present purposes Eq. (14) will be used and 
inspection of  (11) shows that, in this case, 

1 
d i = - -  ~ (m - n) 2 (p - pi) 2 . 

Substituting this into (14) and taking expectations yields 
the following, 

E(a wi) = 

m 

p q - o ~ , - 4 ( m - n )  2 o 2 

2N 

Where o~, is the variance among demes after migration. 
Proceeding as non page 3, (Eq. (5)), 

p~  o3 1 - - a (m - n) 2 o~ 
O2+ 1 2N + ~  

The variance among demes after migration can be obtain- 
ed from (12). 

o~  = (1 m + _ 2_____~ n )2 o~. 

Which gives the recursion for the variance as follows, 

o~+ l - pq 
2N + (re+n) 1 1 i 1 2 + ~ ( m _ n )  2 . (16)  

o~ (1 m + n  2 
2 ) 2 _  

2N 

At equilibrium, o~+ 1 = o 2 = 62 , which is the following: 

b 2 = Pq 
( ( r e+n )2 )  ( m + n 2 )  1 

2N m + n  4 + 1 -  ~ + ~ ( m - n )  2. 

(17) 
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For small m, n this becomes, 

62 = Pq 
2N (m + n) + 1 (18) 

and if m = n = M, the result is the same as the classical 
result, Eq. (8B). 

We now return to the new features which appear with 
sex dependent migration. These are revealed by the 
genotypic frequencies for demes, Eq. (11), and for the 
whole population, Eq. (13). 

The genotypic frequencies in demes show the anti- 
cipated excess of heterozygotes as compared to Hardy- 
Weinberg expectations. Specifically, di, the deviation of 
the homozygotes from Hardy-Weinberg expectations, is 

1 
d i = - ~  (m - n )  2 (p - pi) 2 . (19) 

Let this deviation for the average deme be d, defined 
(E(di), then 

1 ( m -  n) 2 o 2. (20) 

(Because we assume that some kind of equilibrium situa- 
tion prevails, the ' t '  isdropped from o~.) 

This would give an average excess of heterozygotes of 
1/2 (m-n) 2 02. 

In the case of the global genotypic frequencies, Eq. 
(13), we let D be the homozygote departure from Hardy- 
Weinberg expectation. 

D= o 2 (1 - m ) ( 1  - n ) .  (21) 

Since D I> 0, the local heterozygote excess can never 
extend to the global level, at least in the Island model. 

Equation (21) shows that if one or both sexes have a 
very high immigration rate (m in the case of Swartz and 
Armitage's marmots was m = .95), the excess homozy- 
gotes are reduced, and approach Hardy-Weinberg frequen- 
cies, as m (or n) ~ 1. In this extreme case, then, there 
would be no global evidence for subdivision, but local 
excess of heterozygotes would be found, providing local 
demes could be identified as such. However, the magni- 
tude of this excess is not very great, as Eq. (20) shows. On 
the other hand, holding (m + n) constant, then as m -+ n 
the global excess of homozygotes rises to a maximum. 

study of Swartz and Armitage. As in their study, most 
field studies will usually encompass some subset of demes 
which receive migrants from unknown sources, outside 
the study area. Letting p* denote the gene frequency car- 
ried by migrants, some of whom are alien to the study 
area, then the d, for the average local deme, becomes, 

= _ (m - n) 2 (e 2 + ( ~ _  p.)2), (22) 
4 

and D for the whole study area will be, 

D = o 2 (1 - m) (1 - n) (m + n) 2 (~ _ p.)2 (23) 
4 

The local d is enhanced, and also the possibility now arises 
for a net excess of heterozygotes over the whole study 
area, since, D, can now be less than zero. Of course, with 
migration being the only deterministic effect in this ideal- 
ized model, this is not an equilibrium situation. The whole 
study area p would eventually move to the alien gene 
frequency. We now turn to the Pollen-Seed version of the 
island model. 

4 Pollen-Seed Model 

In this model both sexes are allowed to migrate differenti- 
ally as in the Marmot model. In this case, however, the 
males migrate first and engage in mating with local un- 
mated females, and after this the mated females migrate. 
As I mentioned earlier, this scheme of sequential migra- 
tion events is equivalent to the migration of pollen at the 
time when plants are flowering, and then, at a later time, 
the migration of the seeds which result from the pollina- 
tion. After the male migration into a local deme i, the 
male and female allele frequencies will be as follows: 

[)id = (1 -- m) Pi + mp, 

and Pi9 = Pi. 

The resulting gene frequency among the diploid immi- 
grants is (Pic~ + P ig )  1 or ,  

m -- 
Pi = Pi + 7 (p  --  Pi).  ( 2 4 )  

The local homozygote frequency is Pi~Pic~, 

D= O 2 (1 - M ) 2 , w h e r e m =  n =M, 

Thus, when m = n = M, both the genotypic distribution 
and the variance, (18), reduce, as they should, to the sex 
independent case discussed in the beginning. 

Before proceeding to the 'Pollen-Seed' island model, a 
digression seems appropriate which illustrates the Out- 
come of a model which is more closely analogous to the 

Pi = (1 - m) p~ + mpp i. (25) 

The global genotypic frequencies of seeds P, H, Q can be 
obtained from E(Pi) , and are as follows: 

p =p2 +a2 (1 - m ) ,  

= 2 ~ -  - 2o 2 (1 - m), 

andU~=~2 + o  2 ( l - m ) .  

(26A) 

(26B) 

(26C) 



T. Prout: A Note on the Island Model with Sex Dependent Migration 331 

These are the same as in the Marmot Model when n = 0 in 
that model. For the second migration event, seeds are 
drawn from the above genotypes and returned to deme i 
such that (l-n) are natives and n are immigrants. The new 
local gene frequency, denoted by Pi is given by, 

"Pi = (1 - n) f)i + n p ,  (27A) 

or, substituting (24) for Pi, 

m m 
Pi = Pi (1 -- n )  (1 -- ~ )  + p ( ( 1  -- n )  + n). (27B) 

The new local homozygote frequency, Pi will be, 

Pi = (1 - n) Pi +nP .  (28A) 

Substituting (25) for Pi and (26A) for P, gives, 

Pi = (1 - n) (1 - m) p~ + (1 - n) mppi +np 2 + 

o 2 n(1 -- m). (29B) 

The local deviation from Hardy-Weinberg frequenties, di, is 

di ='pi _ ' p  2 ' 

and the average deviation d is E(di) or 

= E(Pi) - E(p 2 ). (30A) 

Substituting (27B) for Pi and (29B) for P~i, and taking 
expectations results in the following, 

1 2 m2 = o 2 ((2n - n 2) (1 - - ~ m )  - ~ -  ). (308) 

Before examining (30B), it should first be noted that the 
global genotypic frequencies have not changed; that is, 
E(Pi) -- P, so that the global genotypic frequencies are still 
given 
using 
small 
and n 

or ~2 

by (26). The equilibrium variance was calculated 
the same procedures as before. If migration rates are 
enough so that second and higher order terms in m 
can be dropped the result is: 

Pq (31A) 
2N ( 2 n +  m) + 1 + m  

=~ Pq (31B) 
4Nn + 2Nm + 1 

This result shows that with respect to the equilibrium 
variance the Pollen-Seed model receives more migrant 
genes into the local deme than in the Marmot model. 
Equating m = 0 in the above, results in the equilibrium 
variance having the same form as Eq. (18) in the Marmot 
or the classic model, Eq. (88). This is because the immi- 

gration of  virgin females and males in the Marmot model 
introduces the same number of  genes as the immigration 
of  diploid mated females or seeds in the Pollen-Seed 
model without any immigration of  males or pollen at the 
earlier time in the life cycle when the plants or female 
animals are flowering. 

If  both kinds o f  migration occur and are of  equal mag- 
nitude, m = n = M, then 

b 2 - Pq (28C) 
6NM + 1 

Thus, neither the Marmot model nor the Pollen-Seed 
model differ greatly from the basic sex independent 
model in their effects on the variance, 62 , compare Eqs. 
(88), (18) and (31B). 

We now return to Eq. (30B) which gives the local 
deviation from Hardy-Weinberg frequencies, and which re- 
veals the important difference between the Marmot model 
(Eq. 20) and the Pollen-Seed model. 
If  there is no seed migration, n = 0, then the Pollen-Seed 
model is identical to the Marmot model for the case where 
migration is restricted to males only; i.e., there is a defi- 

m 2 
ciency of  homozygotes, d = - o 2 - ~  - . If there is no pollen 

migration, m = 0, then there is a local excess of  homozy- 
gotes. This is to be expected, since the migration of  di- 
ploid zygotes will produce a simple local Wahlund effect 
due to mechanical mixing. 

This effect due to migration of  seeds tends to domi- 
nate the counter effect due to the migration of  gametes in 
the form of  pollen (males). This can be shown by dividing 
the n, m parameter space by the function n = f(m) obtain- 

1.0 

0.8 

0.6 Helerozygote / 
0.4 deficiency / 

0.2 ~ Hetero rgote 
0 ' ~ ' excless 
0 0.2 0.4 0.6 0.8 1.0 

m: -~ 

Fig. l. n ~_ seed migration and m ~_ pollen migration. The func- 
tion shown is 

1 z 

Combinations of n, m above the line produce average local defi- 
ciency of heterozygotes, while combinations below the line pro- 
duce average local excess of heterozygotes 
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ed when the local effects of the two kinds of migration 
just cancel rendering the d of Eq. (30B) equal to zero. 

The resulting function is 

~(1 - m  
n = l -  

1 - �89 m )  2 

Figure 1 shows this curve. Quite clearly, for the Pollen- 
Seed model, any heterozygote excess due to sex depen- 
dent migration could only appear in species where there is 
substantial migration which is essentially restricted to the 
pollen (males). 

Conclusions 

As I stated in the introduction, the Island model with 
migration, including the extensions developed here to sex 
dependent migration, is not the kind of model which is 
ready-made for testing against field data. This is so for 
several reasons. 

As discussed briefly on page 8, most field studies will 
deal with only some kind of subset of demes, and usually 
will have to accommodate in some way the immigration 
of aliens. Also, it would seem that stepping stone migra- 
tion might be a better representation of migration pat- 
terns. Stepping stone migration permits more differentia- 
tion among demes than indicated by the Island model 
equilibrium variances derived in this article; however, per- 
haps the main results reported here would also apply to a 
stepping stone model, although with lesser magnitude. 
Finally, patchiness in fitness might add to, and enhance 
dispersive effects of random drift. In this case there is no 
way, at present, to predict genotypic frequencies; so that 
a drift-migration model merely identifies the effects due 
to that component alone. Therefore, the purpose of this 
note is simply to employ a theoretical metaphor which 
might influence the approaches of experimentalists who 
are attempting to deduce population structure through 
the use of genetic markers. This metaphor has four fea- 
tures which may serve this purpose: First, the metaphor 
shows that there are at least two different kinds of migra- 
tion with rather different consequences (Marmot model 
vs. Pollen-Seed model). The particular kind of migration 
involved in the organism being studied can often be identi- 
fied, and even some notion of the relevant parameter val- 

ues (m, n) estimated from direct biological observation 
rather than only by inference from genetic studies. Sec- 
ond, the metaphor shows that there is a very realistic 
mechanism for obtaining heterozygote excess without 
overdominant selection. However, the magnitude of this 
excess is not very large. Third, the Pollen-Seed metaphor 
shows that a population could exhibit near Hardy-Wein- 
berg frequencies at both levels (local and global) and still 
have a differentiated demic substructure. Fourth, the Pol- 
len-Seed metaphor shows that, in a certain sense, seed 
migration is 'more important' than pollen migration. 

Most of these conclusions entail no surprises, in the 
sense that they are intuitively evident. For example, the 
second item, above, states that sex dependent migration 
will tend to generate heterozygote excess; this 'obvious' 
result nevertheless has some value because intuitive 
guesses about population dynamics can sometimes be 
wrong. For example, I anticipated that for extreme migra- 
tion differences between the sexes, there might be a global 
excess of heterozygotes which, for the Island model at 
least, is not the case. Other results, as for example item 
four, concerning the relative importance of the two kinds 
of migration, brings out a relationship which was not anti- 
cipated. Thus, I feel I have gained some new insights con- 
cerning the effects of migration on population structure as 
a result of this mathematical exercise. It is hoped that this 
note will serve the same function for others. 
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